Extensions 1→N→G→Q→1 with N=C32×SD16 and Q=C2

Direct product G=N×Q with N=C32×SD16 and Q=C2
dρLabelID
SD16×C3×C6144SD16xC3xC6288,830

Semidirect products G=N:Q with N=C32×SD16 and Q=C2
extensionφ:Q→Out NdρLabelID
(C32×SD16)⋊1C2 = C3×Q83D6φ: C2/C1C2 ⊆ Out C32×SD16484(C3^2xSD16):1C2288,685
(C32×SD16)⋊2C2 = C3×D4.D6φ: C2/C1C2 ⊆ Out C32×SD16484(C3^2xSD16):2C2288,686
(C32×SD16)⋊3C2 = C247D6φ: C2/C1C2 ⊆ Out C32×SD1672(C3^2xSD16):3C2288,771
(C32×SD16)⋊4C2 = C24.32D6φ: C2/C1C2 ⊆ Out C32×SD16144(C3^2xSD16):4C2288,772
(C32×SD16)⋊5C2 = C3×S3×SD16φ: C2/C1C2 ⊆ Out C32×SD16484(C3^2xSD16):5C2288,684
(C32×SD16)⋊6C2 = C3×Q8.7D6φ: C2/C1C2 ⊆ Out C32×SD16484(C3^2xSD16):6C2288,687
(C32×SD16)⋊7C2 = SD16×C3⋊S3φ: C2/C1C2 ⊆ Out C32×SD1672(C3^2xSD16):7C2288,770
(C32×SD16)⋊8C2 = C24.40D6φ: C2/C1C2 ⊆ Out C32×SD16144(C3^2xSD16):8C2288,773
(C32×SD16)⋊9C2 = C32×C8⋊C22φ: C2/C1C2 ⊆ Out C32×SD1672(C3^2xSD16):9C2288,833
(C32×SD16)⋊10C2 = C32×C8.C22φ: C2/C1C2 ⊆ Out C32×SD16144(C3^2xSD16):10C2288,834
(C32×SD16)⋊11C2 = C32×C4○D8φ: trivial image144(C3^2xSD16):11C2288,832


׿
×
𝔽